The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Kurzweil-Henstock and Kurzweil-Henstock-Pettis integrability of strongly measurable functions

B. BongiornoLuisa Di PiazzaKazimierz Musiał — 2006

Mathematica Bohemica

We study the integrability of Banach valued strongly measurable functions defined on [ 0 , 1 ] . In case of functions f given by n = 1 x n χ E n , where x n belong to a Banach space and the sets E n are Lebesgue measurable and pairwise disjoint subsets of [ 0 , 1 ] , there are well known characterizations for the Bochner and for the Pettis integrability of f (cf Musial (1991)). In this paper we give some conditions for the Kurzweil-Henstock and the Kurzweil-Henstock-Pettis integrability of such functions.

Page 1

Download Results (CSV)