Hyperspaces of CW-complexes
It is shown that the hyperspace of a connected CW-complex is an absolute retract for stratifiable spaces, where the hyperspace is the space of non-empty compact (connected) sets with the Vietoris topology.
It is shown that the hyperspace of a connected CW-complex is an absolute retract for stratifiable spaces, where the hyperspace is the space of non-empty compact (connected) sets with the Vietoris topology.
It is shown that the hyperspace of non-empty finite subsets of a space X is an ANR (an AR) for stratifiable spaces if and only if X is a 2-hyper-locally-connected (and connected) stratifiable space.
Page 1