Generalized-pure-hereditary radical classes of Abelian groups
A method due to Fay and Walls for associating a factorization system with a radical is examined for associative rings. It is shown that a factorization system results if and only if the radical is strict and supernilpotent. For groups and non-associative rings, no radical defines a factorization system.
We consider rings equipped with a closure operation defined in terms of a collection of commuting idempotents, generalising the idea of a topological closure operation defined on a ring of sets. We establish the basic properties of such rings, consider examples and construction methods, and then concentrate on rings which have a closure operation defined in terms of their lattice of central idempotents.
We continue the study of directoid groups, directed abelian groups equipped with an extra binary operation which assigns an upper bound to each ordered pair subject to some natural restrictions. The class of all such structures can to some extent be viewed as an equationally defined substitute for the class of (2-torsion-free) directed abelian groups. We explore the relationship between the two associated categories, and some aspects of ideals of directoid groups.
Page 1