Radicals which define factorization systems
Commentationes Mathematicae Universitatis Carolinae (1991)
- Volume: 32, Issue: 4, page 601-607
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGardner, Barry J.. "Radicals which define factorization systems." Commentationes Mathematicae Universitatis Carolinae 32.4 (1991): 601-607. <http://eudml.org/doc/247297>.
@article{Gardner1991,
abstract = {A method due to Fay and Walls for associating a factorization system with a radical is examined for associative rings. It is shown that a factorization system results if and only if the radical is strict and supernilpotent. For groups and non-associative rings, no radical defines a factorization system.},
author = {Gardner, Barry J.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {radical class; factorization system; radical class; strict radical; factorization system; supernilpotent radical; non-associative rings},
language = {eng},
number = {4},
pages = {601-607},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Radicals which define factorization systems},
url = {http://eudml.org/doc/247297},
volume = {32},
year = {1991},
}
TY - JOUR
AU - Gardner, Barry J.
TI - Radicals which define factorization systems
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1991
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 32
IS - 4
SP - 601
EP - 607
AB - A method due to Fay and Walls for associating a factorization system with a radical is examined for associative rings. It is shown that a factorization system results if and only if the radical is strict and supernilpotent. For groups and non-associative rings, no radical defines a factorization system.
LA - eng
KW - radical class; factorization system; radical class; strict radical; factorization system; supernilpotent radical; non-associative rings
UR - http://eudml.org/doc/247297
ER -
References
top- Bousfield A.K., Construction of factorization systems in categories, J. Pure Appl. Algebra 9 (1977), 207-220. (1977) MR0478159
- Fay T.H., Compact modules, Comm. Algebra 16 (1988), 1209-1219. (1988) Zbl0653.16020MR0939039
- Fay T.H., Walls G.L., Compact nilpotent groups, Comm. Algebra 17 (1989), 2255-2268. (1989) Zbl0683.20028MR1016864
- Fay T.H., Walls G.L., Categorically compact locally nilpotent groups, Comm. Algebra 18 (1990), 3423-3435. (1990) Zbl0739.20012MR1063986
- Gardner B.J., Some degeneracy and pathology in non-associative radical theory, Annales Univ. Sci. Budapest Sect. Math. 22-23 (1979-80), 65-74. Zbl0447.17004MR0588424
- Gardner B.J., Radical Theory, Longman, Harlow, 1989. Zbl1169.16012MR1006673
- Herrlich H., Salicrup G., Strecker G.E., Factorizations, denseness, separation, and relatively compact objects, Topology Appl. 27 (1987), 157-169. (1987) Zbl0629.18003MR0911689
- Manes E.G., Compact Hausdorff objects, General Topology Appl. 4 (1974), 341-360. (1974) Zbl0289.54003MR0367901
- Mrówka S., Compactness and product spaces, Colloq. Math. 7 (1959), 19-22. (1959) MR0117704
- Puczylowski E.R., On unequivocal rings, Acta Math. Acad. Sci Hungar. 36 (1980), 57-62. (1980) Zbl0464.16005MR0605170
- Sands A.A., On ideals in over-rings, Publ. Math. Debrecen 35 (1988), 273-279. (1988) Zbl0688.16035MR1005290
- Stewart P.N., Strict radical classes of associative rings, Proc. Amer. Math. Soc. 39 (1973), 273-278. (1973) Zbl0244.16005MR0313296
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.