The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 15 of 15

Showing per page

Order by Relevance | Title | Year of publication

On concentrated probabilities

Wojciech Bartoszek — 1995

Annales Polonici Mathematici

Let G be a locally compact Polish group with an invariant metric. We provide sufficient and necessary conditions for the existence of a compact set A ⊆ G and a sequence g n G such that μ n ( g n A ) 1 for all n. It is noticed that such measures μ form a meager subset of all probabilities on G in the weak measure topology. If for some k the convolution power μ k has nontrivial absolutely continuous component then a similar characterization is obtained for any locally compact, σ-compact, unimodular, Hausdorff topological...

On iterates of strong Feller operators on ordered phase spaces

Wojciech Bartoszek — 2004

Colloquium Mathematicae

Let (X,d) be a metric space where all closed balls are compact, with a fixed σ-finite Borel measure μ. Assume further that X is endowed with a linear order ⪯. Given a Markov (regular) operator P: L¹(μ) → L¹(μ) we discuss the asymptotic behaviour of the iterates Pⁿ. The paper deals with operators P which are Feller and such that the μ-absolutely continuous parts of the transition probabilities P ( x , · ) x X are continuous with respect to x. Under some concentration assumptions on the asymptotic transition probabilities...

On uniformly smoothing stochastic operators

Wojciech Bartoszek — 1995

Commentationes Mathematicae Universitatis Carolinae

We show that a stochastic operator acting on the Banach lattice L 1 ( m ) of all m -integrable functions on ( X , 𝒜 ) is quasi-compact if and only if it is uniformly smoothing (see the definition below).

Page 1

Download Results (CSV)