Fragmentation of ordered partitions and intervals.
In this paper, we study additive coalescents. Using their representation as fragmentation processes, we prove that the law of a large class of eternal additive coalescents is absolutely continuous with respect to the law of the standard additive coalescent on any bounded time interval.
A stochastic system of particles is considered in which the sizes of the particles increase by successive binary mergers with the constraint that each coagulation event involves a particle with minimal size. Convergence of a suitably renormalized version of this process to a deterministic hydrodynamical limit is shown and the time evolution of the minimal size is studied for both deterministic and stochastic models.
Page 1