Let be M a smooth manifold, A a local algebra and a manifold of infinitely near points on M of kind A. We build the canonical foliation on and we show that the canonical foliation on the tangent bundle TM is the foliation defined by its canonical field.
Let be a smooth manifold, a local algebra in sense of André Weil, the manifold of near points on of kind and the module of vector fields on . We give a new definition of vector fields on and we show that is a Lie algebra over . We study the cohomology of -differential forms.
Résumé. On considère une variété différentielle, une algèbre locale au sens d’André Weil, la variété des points proches de d’espèce et le module des champs de vecteurs sur . On donne une nouvelle...
In this paper, denotes a smooth manifold of dimension , a Weil algebra and the associated Weil bundle. When is a Poisson manifold with -form , we construct the -Poisson form , prolongation on of the -Poisson form . We give a necessary and sufficient condition for that be an -Poisson manifold.
Download Results (CSV)