On effective criteria of solvability of the boundary value problems for ordinary differential equations of the -th order
This paper deals with the system of functional-differential equations where is a linear bounded operator, , and and are spaces of -dimensional -periodic vector functions with continuous and integrable on components, respectively. Conditions which guarantee the existence of a unique -periodic solution and continuous dependence of that solution on the right hand side of the system considered are established.
For the differential equation where the vector function has nonintegrable singularities with respect to the first argument, sufficient conditions for existence and uniqueness of the Vallée–Poussin problem are established.
Consider the homogeneous equation where is a linear bounded operator. The efficient conditions guaranteeing that the solution set to the equation considered is one-dimensional, generated by a positive monotone function, are established. The results obtained are applied to get new efficient conditions sufficient for the solvability of a class of boundary value problems for first order linear functional differential equations.
The nonimprovable sufficient conditions for the unique solvability of the problem where is a linear bounded operator, , , are established which are different from the previous results. More precisely, they are interesting especially in the case where the operator is not of Volterra’s type with respect to the point .
Page 1