On the iteration of . (Sur l'itéré de .)
In this paper, we prove a remarkable property of the coefficients of Nörlund’s polynomials obtained mainly from a result of J.-L. Chabert.
Letting (resp. ) be the n-th Chebyshev polynomials of the first (resp. second) kind, we prove that the sequences and for n - 2⎣n/2⎦ ≤ k ≤ n - ⎣n/2⎦ are two basis of the ℚ-vectorial space formed by the polynomials of ℚ[X] having the same parity as n and of degree ≤ n. Also and admit remarkableness integer coordinates on each of the two basis.
La somme des puissances des inverses de , désignant le nombre de nombres premiers n’excédant pas , a fait l’objet de nombreux travaux. Nous généralisons, dans cet article, les formules asymptotiques obtenues par ces auteurs à toute une classe de fonctions arithmétiques.
Using umbral calculus, we establish a symmetric identity for any sequence of polynomials satisfying with a constant polynomial. This identity allows us to obtain in a simple way some known relations involving Apostol-Bernoulli polynomials, ApostolEuler polynomials and generalized Bernoulli polynomials attached to a primitive Dirichlet character.
Page 1