The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 12 of 12

Showing per page

Order by Relevance | Title | Year of publication

Existence results for quasilinear degenerated equations via strong convergence of truncations.

Youssef AkdimElhoussine AzroulAbdelmoujib Benkirane — 2004

Revista Matemática Complutense

In this paper we study the existence of solutions for quasilinear degenerated elliptic operators A(u) + g(x,u,∇u) = f, where A is a Leray-Lions operator from W (Ω,ω) into its dual, while g(x,s,ξ) is a nonlinear term which has a growth condition with respect to ξ and no growth with respect to s, but it satisfies a sign condition on s. The right hand side f is assumed to belong either to W(Ω,ω*) or to L(Ω).

Existence of Solution for Quasilinear Degenerated Elliptic Unilateral Problems

Youssef AkdimElhoussine AzroulAbdelmoujib Benkirane — 2003

Annales mathématiques Blaise Pascal

An existence theorem is proved, for a quasilinear degenerated elliptic inequality involving nonlinear operators of the form A u + g ( x , u , u ) , where A is a Leray-Lions operator from W 0 1 , p ( Ω , w ) into its dual, while g ( x , s , ξ ) is a nonlinear term which has a growth condition with respect to ξ and no growth with respect to s , but it satisfies a sign condition on s , the second term belongs to W - 1 , p ( Ω , w * ) .

Entropy solutions for nonlinear unilateral parabolic inequalities in Orlicz-Sobolev spaces

Azeddine Aissaoui FqayehAbdelmoujib BenkiraneMostafa El Moumni — 2014

Applicationes Mathematicae

We discuss the existence of entropy solution for the strongly nonlinear unilateral parabolic inequalities associated to the nonlinear parabolic equations ∂u/∂t - div(a(x,t,u,∇u) + Φ(u)) + g(u)M(|∇u|) = μ in Q, in the framework of Orlicz-Sobolev spaces without any restriction on the N-function of the Orlicz spaces, where -div(a(x,t,u,∇u)) is a Leray-Lions operator and Φ C ( , N ) . The function g(u)M(|∇u|) is a nonlinear lower order term with natural growth with respect to |∇u|, without satisfying the sign...

Entropy solutions to parabolic equations in Musielak framework involving non coercivity term in divergence form

We prove the existence of solutions to nonlinear parabolic problems of the following type: b ( u ) t + A ( u ) = f + div ( Θ ( x ; t ; u ) ) in Q , u ( x ; t ) = 0 on Ω × [ 0 ; T ] , b ( u ) ( t = 0 ) = b ( u 0 ) on Ω , where b : is a strictly increasing function of class 𝒞 1 , the term A ( u ) = - div ( a ( x , t , u , u ) ) is an operator of Leray-Lions type which satisfies the classical Leray-Lions assumptions of Musielak type, Θ : Ω × [ 0 ; T ] × is a Carathéodory, noncoercive function which satisfies the following condition: sup | s | k | Θ ( · , · , s ) | E ψ ( Q ) for all k > 0 , where ψ is the Musielak complementary function of Θ , and the second term f belongs to L 1 ( Q ) .

Page 1

Download Results (CSV)