Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Mean curvature properties for p -Laplace phase transitions

Berardino SciunziEnrico Valdinoci — 2005

Journal of the European Mathematical Society

This paper deals with phase transitions corresponding to an energy which is the sum of a kinetic part of p -Laplacian type and a double well potential h 0 with suitable growth conditions. We prove that level sets of solutions of Δ p u = h 0 ' ( u ) possessing a certain decay property satisfy a mean curvature equation in a suitable weak viscosity sense. From this, we show that, if the above level sets approach uniformly a hypersurface, the latter has zero mean curvature.

Bernstein and De Giorgi type problems: new results via a geometric approach

Alberto FarinaBerardino SciunziEnrico Valdinoci — 2008

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We use a Poincaré type formula and level set analysis to detect one-dimensional symmetry of stable solutions of possibly degenerate or singular elliptic equations of the form div a ( | u ( x ) | ) u ( x ) + f ( u ( x ) ) = 0 . Our setting is very general and, as particular cases, we obtain new proofs of a conjecture of De Giorgi for phase transitions in  2 and  3 and of the Bernstein problem on the flatness of minimal area graphs in  3 . A one-dimensional symmetry result in the half-space is also obtained as a byproduct of our...

Page 1

Download Results (CSV)