Fixed points of composite entire and quasiregular maps.
Our main result implies the following theorem: Let f be a transcendental meromorphic function in the complex plane. If f has finite order ρ, then every asymptotic value of f, except at most 2ρ of them, is a limit point of critical values of f. We give several applications of this theorem. For example we prove that if f is a transcendental meromorphic function then f'fn with n ≥ 1 takes every finite non-zero value infinitely often. This proves a conjecture of Hayman....
For an entire function let be the Newton function associated to . Each zero of is an attractive fixed point of and is contained in an invariant component of the Fatou set of the meromorphic function in which the iterates of converge to . If has an asymptotic representation , in a sector , then there exists an invariant component of the Fatou set where the iterates of tend to infinity. Such a component is called an invariant Baker domain. A question in the opposite...
Page 1