The search session has expired. Please query the service again.
For a Lebesgue integrable complex-valued function defined on let be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that as . But in general, there is no definite rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier transform of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to know for functions of which subclasses of there is a definite rate at which the Walsh-Fourier transform tends to zero. We...
We consider the Vilenkin orthonormal system on a Vilenkin group and the Vilenkin-Fourier coefficients , , of functions for some . We obtain certain sufficient conditions for the finiteness of the series , where is a given sequence of positive real numbers satisfying a mild assumption and . We also find analogous conditions for the double Vilenkin-Fourier series. These sufficient conditions are in terms of (either global or local) moduli of continuity of and give multiplicative analogue...
Download Results (CSV)