The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 16 of 16

Showing per page

Order by Relevance | Title | Year of publication

A limit involving functions in W 0 1 , p ( Ω )

Biagio Ricceri — 1999

Colloquium Mathematicae

We point out the following fact: if Ω ⊂ n is a bounded open set, δ>0, and p>1, then l i m 0 + i n f V Ω | ( x ) | p d x = , where V = W 0 1 , p ( Ω ) : m e a s ( x Ω : | ( x ) | > δ ) > .

A bifurcation theory for some nonlinear elliptic equations

Biagio Ricceri — 2003

Colloquium Mathematicae

We deal with the problem ⎧ -Δu = f(x,u) + λg(x,u), in Ω, ⎨ ( P λ ) ⎩ u Ω = 0 where Ω ⊂ ℝⁿ is a bounded domain, λ ∈ ℝ, and f,g: Ω×ℝ → ℝ are two Carathéodory functions with f(x,0) = g(x,0) = 0. Under suitable assumptions, we prove that there exists λ* > 0 such that, for each λ ∈ (0,λ*), problem ( P λ ) admits a non-zero, non-negative strong solution u λ p 2 W 2 , p ( Ω ) such that l i m λ 0 | | u λ | | W 2 , p ( Ω ) = 0 for all p ≥ 2. Moreover, the function λ I λ ( u λ ) is negative and decreasing in ]0,λ*[, where I λ is the energy functional related to ( P λ ).

Another fixed point theorem for nonexpansive potential operators

Biagio Ricceri — 2012

Studia Mathematica

We prove the following result: Let X be a real Hilbert space and let J: X → ℝ be a C¹ functional with a nonexpansive derivative. Then, for each r > 0, the following alternative holds: either J’ has a fixed point with norm less than r, or s u p | | x | | = r J ( x ) = s u p | | u | | L ² ( [ 0 , 1 ] , X ) = r 0 1 J ( u ( t ) ) d t .

Une propriété topologique de l'ensemble des points fixes d'une contraction multivoque à valeurs convexes

Biagio Ricceri — 1987

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this Note we first establish a result on the structure of the set of fixed points of a multi-valued contraction with convex values. As a consequence of this result, we then obtain the following theorem: Let ( U , U ) , ( V , V ) be two real Banach spaces and let Φ be a continuous linear operator from U onto V . Put: α = sup { inf { u U : u Φ - 1 ( v ) } : v V , v V 1 } . Then, for every v V and every lipschitzian operator Ψ : U V , with Lipschitz constant L such that α L < 1 , the set { u U : Φ ( u ) + Ψ ( u ) = v } is non-empty and arc wise connected.

On multifunctions with convex graph

Biagio Ricceri — 1984

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In questa Nota viene stabilita una caratterizzazione generale della semicontinuità inferiore delle multifunzioni, a grafico convesso, definite in sottoinsieme non vuoto, aperto e convesso di uno spazio vettoriale topologico e a valori in uno spazio vettoriale topologico localmente convesso. Sono poste in luce, poi, varie conseguenze di tale caratterizzazione.

Une propriété topologique de l'ensemble des points fixes d'une contraction multivoque à valeurs convexes

Biagio Ricceri — 1987

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

In this Note we first establish a result on the structure of the set of fixed points of a multi-valued contraction with convex values. As a consequence of this result, we then obtain the following theorem: Let ( U , U ) , ( V , V ) be two real Banach spaces and let Φ be a continuous linear operator from U onto V . Put: α = sup { inf { u U : u Φ - 1 ( v ) } : v V , v V 1 } . Then, for every v V and every lipschitzian operator Ψ : U V , with Lipschitz constant L such that α L < 1 , the set { u U : Φ ( u ) + Ψ ( u ) = v } is non-empty and arc wise connected.

On multifunctions with convex graph

Biagio Ricceri — 1984

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

In questa Nota viene stabilita una caratterizzazione generale della semicontinuità inferiore delle multifunzioni, a grafico convesso, definite in sottoinsieme non vuoto, aperto e convesso di uno spazio vettoriale topologico e a valori in uno spazio vettoriale topologico localmente convesso. Sono poste in luce, poi, varie conseguenze di tale caratterizzazione.

Some properties of perfect metric spaces

Angelo BellaBiagio Ricceri — 1983

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In questa Nota, dati uno spazio metrico perfetto X ed un suo sottoinsieme K chiuso e raro, si dimostra l'esistenza di una funzione continua f : X [ 0 , 1 ] tale che i n t ( f - 1 ( t ) ) = per ogni t [ 0 , 1 ] , f ( x ) = 0 per ogni x K e f ( y ) = 1 per qualche y X K . In particolare, ciò permette di dare risposta simultaneamente a due questioni poste in [2]. Si mettono in evidenza, poi, ulteriori conseguenze di tale risultato.

Some properties of perfect metric spaces

Angelo BellaBiagio Ricceri — 1983

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

In questa Nota, dati uno spazio metrico perfetto X ed un suo sottoinsieme K chiuso e raro, si dimostra l'esistenza di una funzione continua f : X [ 0 , 1 ] tale che i n t ( f - 1 ( t ) ) = per ogni t [ 0 , 1 ] , f ( x ) = 0 per ogni x K e f ( y ) = 1 per qualche y X K . In particolare, ciò permette di dare risposta simultaneamente a due questioni poste in [2]. Si mettono in evidenza, poi, ulteriori conseguenze di tale risultato.

Page 1

Download Results (CSV)