The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper, we consider some
evolution equations of generalized
Ricci curvature and generalized scalar
curvature under the List’s flow.
As applications, we obtain -estimates
for generalized scalar curvature and
the first variational formulae for
non-negative eigenvalues with respect
to the Laplacian.
Let be a complete noncompact Riemannian manifold. We consider gradient estimates on positive solutions to the following nonlinear equation in , where , are two real constants and , is a smooth real valued function on and . When is finite and the -Bakry-Emery Ricci tensor is bounded from below, we obtain a gradient estimate for positive solutions of the above equation. Moreover, under the assumption that -Bakry-Emery Ricci tensor is bounded from below and is bounded from above,...
For compact hypersurfaces with constant mean curvature in the unit sphere, we give a comparison theorem between eigenvalues of the stability operator and that of the Hodge Laplacian on 1-forms. Furthermore, we also establish a comparison theorem between eigenvalues of the stability operator and that of the rough Laplacian.
Download Results (CSV)