The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Approximation of harmonic functions

Björn E. J. Dahlberg — 1980

Annales de l'institut Fourier

Let u be harmonic in a bounded domain D with smooth boundary. We prove that if the boundary values of u belong to L p ( σ ) , where p 2 and σ denotes the surface measure of D , then it is possible to approximate u uniformly by function of bounded variation. An example is given that shows that this result does not extend to p < 2 .

The Dirichlet problem for the biharmonic equation in a Lipschitz domain

Björn E. J. DahlbergC. E. KenigG. C. Verchota — 1986

Annales de l'institut Fourier

In this paper we study and give optimal estimates for the Dirichlet problem for the biharmonic operator Δ 2 , on an arbitrary bounded Lipschitz domain D in R n . We establish existence and uniqueness results when the boundary values have first derivatives in L 2 ( D ) , and the normal derivative is in L 2 ( D ) . The resulting solution u takes the boundary values in the sense of non-tangential convergence, and the non-tangential maximal function of u is shown to be in L 2 ( D ) .

Non-negative solutions of generalized porous medium equations.

Bjorn E. J. DahlbergCarlos E. Kenig — 1986

Revista Matemática Iberoamericana

The purpose of this paper is to study nonnegative solutions u of the nonlinear evolution equations ∂u/∂t = Δφ(u),  x ∈ Rn, 0 < t < T ≤ +∞  (1.1) Here the nonlinearity φ is assumed to be continuous, increasing with φ(0) = 0. This equation arises in various physical problems, and specializing φ leads to models for nonlinear filtrations, or for the gas flow in a porous medium. For a recent survey in these equations...

Page 1

Download Results (CSV)