The classical identification of the predual of B(H) (the algebra of all bounded operators on a Hilbert space H) with the projective operator space tensor product is extended to the context of Hilbert modules over commutative von Neumann algebras. Each bounded module homomorphism b between Hilbert modules over a general C*-algebra is shown to be completely bounded with . The so called projective operator tensor product of two operator modules X and Y over an abelian von Neumann algebra C is introduced...
Given two n-tuples and of bounded linear operators on a Hilbert space the question of when there exists an elementary operator E such that for all j =1,...,n, is studied. The analogous question for left multiplications (instead of elementary operators) is answered in any C*-algebra A, as a consequence of the characterization of closed left A-submodules in .
It is proved that for a von Neumann algebra A ⊆ B(ℋ ) the subspace of normal maps is dense in the space of all completely bounded A-bimodule homomorphisms of B(ℋ ) in the point norm topology if and only if the same holds for the corresponding unit balls, which is the case if and only if A is atomic with no central summands of type . Then a duality result for normal operator modules is presented and applied to the following problem. Given an operator space X and a von Neumann algebra A, is the map...
Download Results (CSV)