Hamiltonian Dynamics on Pseudodifferential Symbols
We survey two problems illustrating geometric-topological and Hamiltonian methods in fluid mechanics: energy relaxation of a magnetic field and conservation laws for ideal fluid motion. More details and results, as well as a guide to the literature on these topics can be found in [].
We propose a new family of natural generalizations of the pentagram map from 2D to higher dimensions and prove their integrability on generic twisted and closed polygons. In dimension there are such generalizations called dented pentagram maps, and we describe their geometry, continuous limit, and Lax representations with a spectral parameter. We prove algebraic-geometric integrability of the dented pentagram maps in the 3D case and compare the dimensions of invariant tori for the dented maps...
Page 1