Geometry of fluid motion
Boris Khesin[1]
- [1] Department of Mathematics, University of Toronto, Toronto, ON M5S 3G3, Canada
Séminaire Équations aux dérivées partielles (2002-2003)
- Volume: 2002-2003, page 1-10
Access Full Article
topAbstract
topHow to cite
topKhesin, Boris. "Geometry of fluid motion." Séminaire Équations aux dérivées partielles 2002-2003 (2002-2003): 1-10. <http://eudml.org/doc/11052>.
@article{Khesin2002-2003,
abstract = {We survey two problems illustrating geometric-topological and Hamiltonian methods in fluid mechanics: energy relaxation of a magnetic field and conservation laws for ideal fluid motion. More details and results, as well as a guide to the literature on these topics can be found in [3].},
affiliation = {Department of Mathematics, University of Toronto, Toronto, ON M5S 3G3, Canada},
author = {Khesin, Boris},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {geodesic flow; Euler equations; energy estimates; geodesics on Lie groups; helicity; topological obstructions to energy relaxation; magnetic field in a perfectly conducting medium; Hamiltonian methods; conservation laws},
language = {eng},
pages = {1-10},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Geometry of fluid motion},
url = {http://eudml.org/doc/11052},
volume = {2002-2003},
year = {2002-2003},
}
TY - JOUR
AU - Khesin, Boris
TI - Geometry of fluid motion
JO - Séminaire Équations aux dérivées partielles
PY - 2002-2003
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2002-2003
SP - 1
EP - 10
AB - We survey two problems illustrating geometric-topological and Hamiltonian methods in fluid mechanics: energy relaxation of a magnetic field and conservation laws for ideal fluid motion. More details and results, as well as a guide to the literature on these topics can be found in [3].
LA - eng
KW - geodesic flow; Euler equations; energy estimates; geodesics on Lie groups; helicity; topological obstructions to energy relaxation; magnetic field in a perfectly conducting medium; Hamiltonian methods; conservation laws
UR - http://eudml.org/doc/11052
ER -
References
top- Arnold, V.I. (1966) Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier 16, 316–361. Zbl0148.45301
- Arnold, V.I. (1973) The asymptotic Hopf invariant and its applications. Proc. Summer School in Diff. Equations at Dilizhan, Erevan (in Russian); English transl.: Sel. Math. Sov. 5 (1986), 327–345. Zbl0623.57016MR891881
- Arnold, V.I. & Khesin, B.A. (1998) Topological methods in hydrodynamics. Applied Mathematical Sciences, vol. 125, Springer-Verlag, New York, pp. xv+374. Zbl0902.76001MR1612569
- Khesin, B.A. & Chekanov, Yu.V. (1989) Invariants of the Euler equation for ideal or barotropic hydrodynamics and superconductivity in dimensions. Physica D 40:1, 119–131. Zbl0820.58019MR1028280
- Freedman, M.H. (1999) Zeldovich’s neutron star and the prediction of magnetic froth. Proceedings of the Arnoldfest, Fields Institute Communications 24 (ed. E.Bierstone, et al.), pp. 165–172. Zbl0973.76097
- Freedman, M.H. & He, Z.-X. (1991) Divergence-free fields: energy and asymptotic crossing number. Annals of Math. 134:1, 189–229. Zbl0746.57011MR1114611
- Khesin, B. & Misiołek, G. (2002) Euler equations on homogeneous spaces and Virasoro orbits. Preprint arXiv: math.SG/0210397, to appear Adv. Math., 26pp. Zbl1017.37039
- Moffatt, H.K. (1969) The degree of knottedness of tangled vortex lines. J. Fluid. Mech. 35, 117–129. Zbl0159.57903
- Moffatt, H.K. & Tsinober, A. (1992) Helicity in laminar and turbulent flow. Annual Review of Fluid Mechanics 24, 281–312. Zbl0751.76018MR1145012
- Ovsienko, V.Yu. & Khesin, B.A. (1987) Korteweg-de Vries super-equation as an Euler equation. Funct. Anal. Appl. 21:4, 329–331. Zbl0655.58018MR925082
- Serre, D. (1984) Invariants et dégénérescence symplectique de l’équation d’Euler des fluids parfaits incompressibles. C.R. Acad. Sci. Paris, Sér. A 298:14, 349–352; also personal communication of L. Tartar. Zbl0598.76006
- Vogel, T. (2000) On the asymptotic linking number. Preprint arXiv: math.DS/0011159, to appear in Proc. AMS, 9pp. Zbl1015.57018MR1963779
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.