Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Geometry of fluid motion

Boris Khesin

Séminaire Équations aux dérivées partielles

We survey two problems illustrating geometric-topological and Hamiltonian methods in fluid mechanics: energy relaxation of a magnetic field and conservation laws for ideal fluid motion. More details and results, as well as a guide to the literature on these topics can be found in [].

The geometry of dented pentagram maps

Boris KhesinFedor Soloviev — 2016

Journal of the European Mathematical Society

We propose a new family of natural generalizations of the pentagram map from 2D to higher dimensions and prove their integrability on generic twisted and closed polygons. In dimension d there are d 1 such generalizations called dented pentagram maps, and we describe their geometry, continuous limit, and Lax representations with a spectral parameter. We prove algebraic-geometric integrability of the dented pentagram maps in the 3D case and compare the dimensions of invariant tori for the dented maps...

Page 1

Download Results (CSV)