By means of the fixed-point methods and the properties of the -pseudo almost periodic functions, we prove the existence, uniqueness, and exponential stability of the -pseudo almost periodic solutions for some models of recurrent neural networks with mixed delays and time-varying coefficients, where is a positive measure. A numerical example is given to illustrate our main results.
The Lyapunov's second method is one of the most famous techniques for studying the stability properties of dynamic systems. This technique uses an auxiliary function, called Lyapunov function, which checks the stability properties of a specific system without the need to generate system solutions. An important question is about the reversibility or converse of Lyapunov's second method; i. e., given a specific stability property does there exist an appropriate Lyapunov function? The main result of...
Download Results (CSV)