Low regularity solutions of the Chern-Simons-Higgs equations in the Lorentz gauge.
We consider a nonlinear Dirac system in one space dimension with periodic boundary conditions. First, we discuss questions on the existence and uniqueness of the solution. Then, we propose an implicit-explicit finite difference method for its approximation, proving optimal order error estimates in various discrete norms and showing results from numerical experiments.
We consider a nonlinear Dirac system in one space dimension with periodic boundary conditions. First, we discuss questions on the existence and uniqueness of the solution. Then, we propose an implicit-explicit finite difference method for its approximation, proving optimal order error estimates in various discrete norms and showing results from numerical experiments.
Page 1