Theory and numerical approximations for a nonlinear 1 + 1 Dirac system
Nikolaos Bournaveas; Georgios E. Zouraris
ESAIM: Mathematical Modelling and Numerical Analysis (2012)
- Volume: 46, Issue: 4, page 841-874
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBournaveas, Nikolaos, and Zouraris, Georgios E.. "Theory and numerical approximations for a nonlinear 1 + 1 Dirac system." ESAIM: Mathematical Modelling and Numerical Analysis 46.4 (2012): 841-874. <http://eudml.org/doc/276381>.
@article{Bournaveas2012,
abstract = {We consider a nonlinear Dirac system in one space dimension with periodic boundary conditions. First, we discuss questions on the existence and uniqueness of the solution. Then, we propose an implicit-explicit finite difference method for its approximation, proving optimal order a priori error estimates in various discrete norms and showing results from numerical experiments.},
author = {Bournaveas, Nikolaos, Zouraris, Georgios E.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Existence; uniqueness; finite difference methods; error estimates; implicit-explicit finite difference method; nonlinear Dirac system},
language = {eng},
month = {2},
number = {4},
pages = {841-874},
publisher = {EDP Sciences},
title = {Theory and numerical approximations for a nonlinear 1 + 1 Dirac system},
url = {http://eudml.org/doc/276381},
volume = {46},
year = {2012},
}
TY - JOUR
AU - Bournaveas, Nikolaos
AU - Zouraris, Georgios E.
TI - Theory and numerical approximations for a nonlinear 1 + 1 Dirac system
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2012/2//
PB - EDP Sciences
VL - 46
IS - 4
SP - 841
EP - 874
AB - We consider a nonlinear Dirac system in one space dimension with periodic boundary conditions. First, we discuss questions on the existence and uniqueness of the solution. Then, we propose an implicit-explicit finite difference method for its approximation, proving optimal order a priori error estimates in various discrete norms and showing results from numerical experiments.
LA - eng
KW - Existence; uniqueness; finite difference methods; error estimates; implicit-explicit finite difference method; nonlinear Dirac system
UR - http://eudml.org/doc/276381
ER -
References
top- A. Alvarez, Linearized Crank-Nicholson scheme for nonlinear Dirac equations. J. Comput. Phys.99 (1992) 348–350.
- A. Alvarez and B. Carreras, Interaction dynamics for the solitary waves of a nonlinear Dirac model. Phys. Lett. A86 (1981) 327–332.
- A. Alvarez, Pen-Yu Kuo and L. Vazquez, The numerical study of a nonlinear one-dimensional Dirac equation. Appl. Math. Comput.13 (1983) 1–15.
- N. Bournaveas, Local and global solutions for a nonlinear Dirac system. Advances Differential Equations9 (2004) 677–698.
- N. Bournaveas, Local well-posedness for a nonlinear Dirac equation in spaces of almost critical dimension. Discrete Contin. Dyn. Syst. Ser. A20 (2008) 605–616.
- N. Boussaid, P. D’Ancona and L. Fanelli, Virial identity and weak dispersion for the magnetic Dirac equation. J. Math. Pures Appl.95 (2011) 137–150.
- J. De Frutos, Estabilidad y convergencia de esquemas numericos para sistemas de Dirac no lineales. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingenieria5 (1989) 185–202.
- J. De Frutos and J.M. Sanz-Serna, Split-step spectral schemes for nonlinear Dirac systems. J. Comput. Phys.83 (1989) 407–423.
- V. Delgado, Global solutions of the Cauchy problem for the classical Coupled Maxwell-Dirac and other nonlinear Dirac equations in one space dimension. Proc. Amer. Math. Soc.69 (1978) 289–296.
- T. Dupont, Galerkin methods for first order hyperbolics : an example. SIAM J Numer. Anal.10 (1973) 890–899.
- R.T. Glassey, On one-dimensional coupled Dirac equations. Trans. Amer. Math. Soc.231 (1977) 531–539.
- B.-Y. Guo, J. Shen and C.-L. Xu, Spectral and pseudospectral approximations using Hermite functions : application to the Dirac equation. Adv. Comput. Math.19 (2003) 35–55.
- J. Hong and C. Li, Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations. J. Comput. Phys.211 (2006) 448–472.
- L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations. Springer-Verlag (1997).
- S. Jiménez, Derivation of the discrete conservation laws for a family of finite difference schemes. Appl. Math. Comput.64 (1994) 13–45.
- T. Kato, Nonlinear semigroups and evolution equations. J. Math. Soc. Japan19 (1967) 508–520.
- S. Machihara, One dimensional Dirac equation with quadratic nonlinearities. Discrete Contin. Dyn. Syst. Ser. A13 (2005) 277–290.
- S. Machihara, Dirac equation with certain quadratic nonlinearities in one space dimension. Commun. Contemp. Math.9 (2007) 421–435.
- S. Machihara, M. Nakamura and T. Ozawa, Small global solutions for nonlinear Dirac equations. Differential Integral Equations17 (2004) 623–636.
- S. Machihara, M. Nakamura, K. Nakanishi and T. Ozawa, Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation. J. Funct. Anal.219 (2005) 1–20.
- S. Machihara, K. Nakanishi and K. Tsugawa, Well-posedness for nonlinear Dirac equations in one dimension. Kyoto J. Math.50 (2010) 403–451.
- A. Majda, Compressible fluid flow and systems of conservation laws in several space variables. Appl. Math. Sci.53 (1984).
- E. Salusti and A. Tesei, On a semi-group approach to quantum field equations. Nuovo Cimento A2 (1971) 122–138.
- I. E. Segal, Non-linear semi-groups. Ann. of Math.78 (1963) 339–364.
- S. Shao and H. Tang, Higher-order accurate Runge-Kutta discontinuous Galerkin methods for a nonlinear Dirac model. Discrete Contin. Dyn. Syst. Ser. B6 (2006) 623–640.
- B. Thaller, The Dirac equation, Texts and Monographs in Physics. Springer-Verlag, Berlin, Heidelberg (2010).
- H. Wang and H. Tang, An efficient adaptive mesh redistribution method for a non-linear Dirac equation. J. Comput. Phys.222 (2007) 176–193.
- G.E. Zouraris, On the convergence of a linear conservative two-step finite element method for the nonlinear Schrödinger equation. ESAIM : M2AN35 (2001) 389–405.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.