The first eigenvalue of a Riemann surface.
If and are two families of unitary bases for , and is a fixed number, let and be subspaces of spanned by vectors in and respectively. We study the angle between and as goes to infinity. We show that when and arise in certain arithmetically defined families, the angles between and may either tend to or be bounded away from zero, depending on the behavior of an associated eigenvalue problem.
We consider the question of whether there is a converse to the Sunada Theorem in the context of -regular graphs. We give a weak converse to the Sunada Theorem, which gives a necessary and sufficient condition for two graphs to be isospectral in terms of a Sunada-like condition, and show by example that a strong converse does not hold.
Page 1