The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Two-dimensional real symmetric spaces with maximal projection constant

Bruce ChalmersGrzegorz Lewicki — 2000

Annales Polonici Mathematici

Let V be a two-dimensional real symmetric space with unit ball having 8n extreme points. Let λ(V) denote the absolute projection constant of V. We show that λ ( V ) λ ( V n ) where V n is the space whose ball is a regular 8n-polygon. Also we reprove a result of [1] and [5] which states that 4 / π = λ ( l ( 2 ) ) λ ( V ) for any two-dimensional real symmetric space V.

A proof of the Grünbaum conjecture

Bruce L. ChalmersGrzegorz Lewicki — 2010

Studia Mathematica

Let V be an n-dimensional real Banach space and let λ(V) denote its absolute projection constant. For any N ∈ N with N ≥ n define λ N = s u p λ ( V ) : d i m ( V ) = n , V l ( N ) , λₙ = supλ(V): dim(V) = n. A well-known Grünbaum conjecture [Trans. Amer. Math. Soc. 95 (1960)] says that λ₂ = 4/3. König and Tomczak-Jaegermann [J. Funct. Anal. 119 (1994)] made an attempt to prove this conjecture. Unfortunately, their Proposition 3.1, used in the proof, is incorrect. In this paper a complete proof of the Grünbaum conjecture is presented

Page 1

Download Results (CSV)