Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Fourier-Feynman transforms of unbounded functionals on abstract Wiener space

Byoung KimIl YooDong Cho — 2010

Open Mathematics

Huffman, Park and Skoug established several results involving Fourier-Feynman transform and convolution for functionals in a Banach algebra S on the classical Wiener space. Chang, Kim and Yoo extended these results to abstract Wiener space for a more generalized Fresnel class 𝒜 1 , 𝒜 2 A1,A2 than the Fresnel class (B)which corresponds to the Banach algebra S. In this paper we study Fourier-Feynman transform, convolution and first variation of unbounded functionals on abstract Wiener space having the form...

Relationships between generalized Wiener integrals and conditional analytic Feynman integrals over continuous paths

Byoung Soo KimDong Hyun Cho — 2017

Czechoslovak Mathematical Journal

Let C [ 0 , t ] denote a generalized Wiener space, the space of real-valued continuous functions on the interval [ 0 , t ] , and define a random vector Z n : C [ 0 , t ] n + 1 by Z n ( x ) = x ( 0 ) + a ( 0 ) , 0 t 1 h ( s ) d x ( s ) + x ( 0 ) + a ( t 1 ) , , 0 t n h ( s ) d x ( s ) + x ( 0 ) + a ( t n ) , where a C [ 0 , t ] , h L 2 [ 0 , t ] , and 0 < t 1 < < t n t is a partition of [ 0 , t ] . Using simple formulas for generalized conditional Wiener integrals, given Z n we will evaluate the generalized analytic conditional Wiener and Feynman integrals of the functions F in a Banach algebra which corresponds to Cameron-Storvick’s Banach algebra 𝒮 . Finally, we express the generalized analytic conditional Feynman...

Page 1

Download Results (CSV)