The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We give a characterization of those probability measures on the real line which satisfy certain Sobolev inequalities. Our starting point is a simpler approach to the Bobkov-Götze characterization of measures satisfying a logarithmic Sobolev inequality. As an application of the criterion we present a soft proof of the Latała-Oleszkiewicz inequality for exponential measures, and describe the measures on the line which have the same property. New concentration inequalities for product measures follow....
Given a metric continuum and a positive integer , denotes the hyperspace of all nonempty subsets of with at most points endowed with the Hausdorff metric. For , denotes the set of elements of containing and denotes the quotient space obtained from by shrinking to one point set. Given a map between continua, denotes the induced map defined by . Let , we shall consider the induced map in the natural way . In this paper we consider the maps , , for some and for...
Download Results (CSV)