Sequential completeness and regularityof inductive limits of webbed spaces
Any inductive limit of bornivorously webbed spaces is sequentially complete iff it is regular.
Any inductive limit of bornivorously webbed spaces is sequentially complete iff it is regular.
Spaces , , of multipliers of temperate distributions introduced in an earlier paper of the first author are expressed as inductive limits of Hilbert spaces.
Sea H un espacio de Hilbert complejo, separable y de dimensión infinita. Denotaremos por L(H) al álgebra de todos los operadores acotados en H. Carl Pearcy en 1977 introdujo el concepto de figura espectral de un operador T en L(H) [13]. Sin lugar a dudas hay dos resultados que hacen de la figura espectral de un operador un concepto importante. El primero se debe a Brown, Douglas y Fillmore: "Dos operadores esencialmente normales son débilmente equivalentes si y sólo si tienen la misma...
Let be a lagrangian foliation on a symplectic manifold . The characteristic elements of such a foliation associated to a lagrangian total transversal are obtained; they are a generalisation of the characteristic elements given by J.J. Duistermaat [5]. This technique is applied to give a classification of the germs of lagrangian foliation along a compact leaf. Several examples of classification are given.
Page 1