Quasi-interpolation and a posteriori error analysis in finite element methods
One of the main tools in the proof of residual-based error estimates is a quasi-interpolation operator due to Clément. We modify this operator in the setting of a partition of unity with the effect that the approximation error has a local average zero. This results in a new residual-based error estimate with a volume contribution which is smaller than in the standard estimate. For an elliptic model problem, we discuss applications to conforming, nonconforming and mixed finite element methods. ...
This paper presents the numerical analysis for a variational formulation of rate-independent phase transformations in elastic solids due to Mielke et al. The new model itself suggests an implicit time-discretization which is combined with the finite element method in space. A priori error estimates are established for the quasioptimal spatial approximation of the stress field within one time-step. A posteriori error estimates motivate an adaptive mesh-refining algorithm for efficient...
This paper presents the numerical analysis for a variational formulation of rate-independent phase transformations in elastic solids due to Mielke The new model itself suggests an implicit time-discretization which is combined with the finite element method in space. error estimates are established for the quasioptimal spatial approximation of the stress field within one time-step. error estimates motivate an adaptive mesh-refining algorithm for efficient discretization. The proposed...
Microstructures in phase-transitions of alloys are modeled by the energy minimization of a nonconvex energy density . Their time-evolution leads to a nonlinear wave equation with the non-monotone stress-strain relation plus proper boundary and initial conditions. This hyperbolic-elliptic initial-boundary value problem of changing types allows, in general, solely Young-measure solutions. This paper introduces a fully-numerical time-space discretization of this equation in a corresponding very...
Microstructures in phase-transitions of alloys are modeled by the energy minimization of a nonconvex energy density . Their time-evolution leads to a nonlinear wave equation with the non-monotone stress-strain relation plus proper boundary and initial conditions. This hyperbolic-elliptic initial-boundary value problem of changing types allows, in general, solely Young-measure solutions. This paper introduces a fully-numerical time-space discretization of this equation in a corresponding...
Page 1