Numerical Analysis of a Relaxed Variational Model of Hysteresis in Two-Phase Solids
Carsten Carstensen; Petr Plecháč
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 35, Issue: 5, page 865-878
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topCarstensen, Carsten, and Plecháč, Petr. "Numerical Analysis of a Relaxed Variational Model of Hysteresis in Two-Phase Solids." ESAIM: Mathematical Modelling and Numerical Analysis 35.5 (2010): 865-878. <http://eudml.org/doc/197540>.
@article{Carstensen2010,
abstract = {
This paper presents the numerical analysis for a
variational formulation of rate-independent phase transformations
in elastic solids due to Mielke et al. The new model itself
suggests an implicit time-discretization which is combined with the
finite element method in space.
A priori error estimates are established for the
quasioptimal spatial approximation of the stress field
within one time-step. A posteriori
error estimates motivate an
adaptive mesh-refining algorithm for efficient discretization.
The proposed scheme enables numerical simulations
which show that the model allows for hysteresis.
},
author = {Carstensen, Carsten, Plecháč, Petr},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Variational problems; phase transitions; elasticity;
hysteresis; a priori error estimates; a posteriori error estimates;
adaptive algorithms; non-convex minimization; microstructure.; variational formulation; two-phase solids; elastic solids; hysteresis; rate-independent phase transformations; a posteriori error estimates; implicit time discretization; microstructure; quasioptimal spatial approximation of stress field; finite element method; a priori error estimates; adaptive mesh-refining algorithm},
language = {eng},
month = {3},
number = {5},
pages = {865-878},
publisher = {EDP Sciences},
title = {Numerical Analysis of a Relaxed Variational Model of Hysteresis in Two-Phase Solids},
url = {http://eudml.org/doc/197540},
volume = {35},
year = {2010},
}
TY - JOUR
AU - Carstensen, Carsten
AU - Plecháč, Petr
TI - Numerical Analysis of a Relaxed Variational Model of Hysteresis in Two-Phase Solids
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 35
IS - 5
SP - 865
EP - 878
AB -
This paper presents the numerical analysis for a
variational formulation of rate-independent phase transformations
in elastic solids due to Mielke et al. The new model itself
suggests an implicit time-discretization which is combined with the
finite element method in space.
A priori error estimates are established for the
quasioptimal spatial approximation of the stress field
within one time-step. A posteriori
error estimates motivate an
adaptive mesh-refining algorithm for efficient discretization.
The proposed scheme enables numerical simulations
which show that the model allows for hysteresis.
LA - eng
KW - Variational problems; phase transitions; elasticity;
hysteresis; a priori error estimates; a posteriori error estimates;
adaptive algorithms; non-convex minimization; microstructure.; variational formulation; two-phase solids; elastic solids; hysteresis; rate-independent phase transformations; a posteriori error estimates; implicit time discretization; microstructure; quasioptimal spatial approximation of stress field; finite element method; a priori error estimates; adaptive mesh-refining algorithm
UR - http://eudml.org/doc/197540
ER -
References
top- J.M. Ball and R.D. James, Fine phase mixtures as minimisers of energy. Arch. Rational Mech. Anal.100 (1987) 13-52.
- J.M. Ball and R.D. James, Proposed experimental tests of the theory of fine microstructure and the two-well problem. Philos. Trans. Roy. Soc. London Ser. A338 (1992) 389-450.
- M. Bildhauer, M. Fuchs and G. Seregin, Local regularity of solutions of variational problems for the equilibrium configuration of an incompressible, multiphase elastic body. Nonlin. Diff. Equations Appl.8 (2001) 53-81.
- S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods, in Texts in Applied Mathematics 15. Springer-Verlag, New York (1994).
- C. Carstensen and S. A. Funken, Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods. East-West J. Numer. Math.8 (2000) 153-175.
- C. Carstensen and S. A. Funken, Fully reliable localised error control in the FEM. SIAM J. Sci. Comput.21 (2000) 1465-1484.
- C. Carstensen and S. Müller, Local stress regularity in scalar non-convex variational problems. In preparation.
- C. Carstensen and P. Plechác, Numerical solution of the scalar double-well problem allowing microstructure. Math. Comp.66 (1997) 997-1026.
- C. Carstensen and Petr Plechác, Numerical analysis of compatible phase transitions in elastic solids. SIAM J. Numer. Anal.37 (2000) 2061-2081.
- P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978).
- H. Le Dret and A. Raoult, Variational convergence for nonlinear shell models with directors and related semicontinuity and relaxation results. Arch. Rational Mech. Anal.154 (1999) 101-134.
- K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Introduction to adaptive methods for differential equations, in Acta Numerica, A. Iserles, Ed., Cambridge University Press, Cambridge (1995) 105-158.
- I. Fonseca and S. Müller, A-quasiconvexity, lower semicontinuity and Young measures. SIAM J. Math. Anal.30 (1999) 1355-1390.
- J. Goodman, R.V. Kohn and L. Reyna, Numerical study of a relaxed variational problem from optimal design. Comput. Methods Appl. Mech. Engrg.57 (1986) 107-127.
- A. G. Khachaturyan, Theory of Structural Transformations in Solids. John Wiley & Sons, New York (1983).
- M.S. Kuczma, A. Mielke and E. Stein, Modelling of hysteresis in two-phase systems. Solid Mechanics Conference (1999); Arch. Mech. 51 (1999) 693-715.
- R.V. Kohn, The relaxation of a double-well energy. Contin. Mech. Thermodyn.3 (1991) 193-236.
- M. Luskin, On the computation of crystalline microstructure, in Acta Numerica, A. Iserles, Ed., Cambridge University Press, Cambridge (1996) 191-257.
- A. Mielke and F. Theil, A mathematical model for rate-independent phase transformations with hysteresis, in Workshop of Continuum Mechanics in Analysis and Engineering, H.-D. Alber, D. Bateau and R. Farwig, Eds. , Shaker-Verlag, Aachen (1999) 117-129.
- A. Mielke, F. Theil and V. I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle. Submitted to Arch. Rational Mech. Anal.
- A. L. Roitburd, Martensitic transformation as a typical phase transformation in solids, in Solid State Physics 33, Academic Press, New York (1978) 317-390.
- G.A. Seregin, The regularity properties of solutions of variational problems in the theory of phase transitions in an elastic body. St. Petersbg. Math. J.7 (1996) 979-1003, English translation from Algebra Anal. 7 (1995) 153-187.
- R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques, in Wiley-Teubner Series Advances in Numerical Mathematics, John Wiley & Sons, Chichester; Teubner, Stuttgart (1996).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.