Adaptive coupling of boundary elements and finite elements
Carsten Carstensen; Ernst P. Stephan
- Volume: 29, Issue: 7, page 779-817
- ISSN: 0764-583X
Access Full Article
topHow to cite
topCarstensen, Carsten, and Stephan, Ernst P.. "Adaptive coupling of boundary elements and finite elements." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 29.7 (1995): 779-817. <http://eudml.org/doc/193792>.
@article{Carstensen1995,
author = {Carstensen, Carsten, Stephan, Ernst P.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {boundary element method; finite element method; symmetric coupling; adaptivity; boundary integral operators; Galerkin discretization; Cea-type discretization error estimates; numerical test examples},
language = {eng},
number = {7},
pages = {779-817},
publisher = {Dunod},
title = {Adaptive coupling of boundary elements and finite elements},
url = {http://eudml.org/doc/193792},
volume = {29},
year = {1995},
}
TY - JOUR
AU - Carstensen, Carsten
AU - Stephan, Ernst P.
TI - Adaptive coupling of boundary elements and finite elements
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1995
PB - Dunod
VL - 29
IS - 7
SP - 779
EP - 817
LA - eng
KW - boundary element method; finite element method; symmetric coupling; adaptivity; boundary integral operators; Galerkin discretization; Cea-type discretization error estimates; numerical test examples
UR - http://eudml.org/doc/193792
ER -
References
top- [1] I. BABUŠKA, A. MILLER, 1981, A posteriori error estimates and adaptive techniques for the finite element method, Univ. of Maryland, Institute for Physical Science and Technology, Tech. Note BN-968, College Park, MD.
- [2] J. BERGH, J. LÖFSTRÖM, 1976, Interpolation spaces, Springer, Berlin. Zbl0344.46071MR482275
- [3] C. CARSTENSEN, 1993, Interface problem in holonomie elastoplasticity, Math. Meth. in the Appl. Sc.16, 819-835. Zbl0792.73017MR1245631
- [4] C. CARSTENSEN, E. P. STEPHAN, 1996, Adaptive boundary element methods for some first kind integral equations, SIAM J. Numen Anal, (to appear). Zbl0863.65073MR1427458
- [5] C. CARSTENSEN, E. P. STEPHAN, 1993. Coupling of FEM and BEM for a Non-linear Interface Problem ; the h-p Version, Numerical Methods for Partial Differential Equations. (to appear). Zbl0833.65123MR1345759
- [6] P. CLEMENT, 1975, Approximation by finite element functions using local regularization, RAIRO, Ser. Rouge Anal Numer., R-2, pp. 77-84. Zbl0368.65008MR400739
- [7] M. COSTABEL, 1987, Symmetrie methods for the coupling of finite elements and boundary elements, In : C. A. Brebia et al. (Eds.), Boundary Elements IX, Vol. 1,pp. 411-420, Springer-Verlag, Berlin.
- [8] M. COSTABEL, 1988, Boundary integral operators on Lipschitz domains : Elementary results, SIAM J. Math. AnaL, 19, pp. 613-626. Zbl0644.35037
- [9] M. COSTABEL, E. P. STEPHAN, 1985, A direct boundary integral equation method for transmission problems, J.Math. Anal. Appl., 106, pp. 367-413. Zbl0597.35021
- [10] M. COSTABEL, E. P. STEPHAN, 1988, Coupling of finite and boundary elements for inhomogeneous transmission problems in R3, in Mathematics of Finite Elements and Applications VI, ed. J. R, Whiteman, pp.289-296, Academie Press. Zbl0687.73034
- [11] M. COSTABEL, E. P. STEPHAN, 1990, Coupling of finite and boundary element methods for an elastoplastic interface problem, SIAM J. Nurnen Anal., 27, pp. 1212-1226. Zbl0725.73090
- [12] D. A. DUNVANT, 1995, High degree efficient symmetrical Gaussian quadrature rules for the triangle, Intern. J. Numer. Meth. Engin., 21, pp. 1129-1148. Zbl0589.65021
- [13] K. ERIKSSON, C. JOHNSON, 1988, An adaptive finite element method for linear elliptic problems, Math. Comp., 50, pp, 361-383. Zbl0644.65080
- [14] K. ERIKSSON, C. JOHNSON, 1991, Adaptive finite element methods for parabolicproblems. I. A linear model problem, SIAM J. Numer. Anal., 28, pp. 43-77. Zbl0732.65093
- [15] V. ERVIN, N. HEUER, E. P. STEPHAN, On the h-p version of the boundary element method for Symm's integral equation on polygons, To appear in Comput.Meth. Appl. Mech. Engin. Zbl0842.65076
- [16] D. GAIER, 1976, Integralgleichungen erster Art und konforme Abbildung, Math.Z, 147, pp. 113-129. Zbl0304.30006
- [17] G. N. GATICA, G. C. HSIAO, 1990, On a class of variational formulations for some nonlinear interface problems, Rendiconti di Mathematica Ser. VII, 10, pp. 681-715. Zbl0767.35019
- [18] G. N. GATICA, G. C. HSIAO, 1992, On the coupled BEM and FEM for a nonlinear exterior Dirichlet problem in R2, Numer. Math., 61,pp, 171-214. Zbl0741.65084MR1147576
- [19] H. HAN, 1990, A new class of variational formulations for the coupling of finite and boundary element methods, J. Comput. Math., 8, pp. 223-232. Zbl0712.65093MR1299224
- [20] C. JOHNSON, P. HANSEO, 1992, Adaptive finite element methods in computational mechanics. Comput Meth. Appl. Mech. Engin., 101, 143-181. Zbl0778.73071MR1195583
- [21] J. L LIONS, E. MAGENES, 1972, Non-homogeneous boundary value problems and applications, Vol. I. Berlin-Heidelberg-New York : Springer. Zbl0223.35039MR350177
- [22] J. C. NEDELEC, 1978, La méthode des éléments finis appliquée aux équations intégrales de la physique, First meeting AFCET-SMF on applied mathematics Palaiseau, Vol. 1, pp. 181-190. Zbl0486.45008
- [23] F. V. POSTELL, E. P. STEPHAN, 1990, On the h-, p- and h-p versions of the boundary element method-numerical results, Computer Meth. in Appl. Mechanicsand Egin, 83, pp. 69-89. Zbl0732.65101MR1078696
- [24] E. RANK, 1987, Adaptive boundary element methods in ; C. A. Brebbia, W. LWendland and G. Kuhn, eds., Boundary Elements, 9, Vol. 1, pp.259-273, Springer-Verlag, Heidelberg. MR965323
- [25] I. H SLOAN, A. SPENCE, 1988, The Galerkin Method for Intégral Equations of thefirst kind with Logarithmic Kernel, Theory, IMA J. Numer. Anal, 8, pp. 105-122. Zbl0636.65143MR967846
- [26] E. P. STEPHAN, W. L. WENDLAND, 1984, An augmented Galerkin Procedure for the boundary integral method applied to two-dimensional screen and crack problems, Applicable Analysis, 18, pp. 183-219. Zbl0522.73083MR767500
- [27] H. H. STROUD, D. SECREST, 1966, Gaussian quadrature formulas, Prentice Hall,Englewood Cliff. Zbl0156.17002MR202312
- [28] R. VERFÜRTH, 1992, A posteriori error estimates for non-linear problems. Finite element discretization of elliptic equations, Preprint. MR1213837
- [29] W. L. WENDLAND, 1988, On Asymptotic Error Estimates for Combined BEM and FEM, in Finite and boundary element techniques from mathematical and engineering point of view, CISM Courses 301, E. Stein, W. L. Wendland, eds.,Springer-Verlag New York, pp. 273-331. Zbl0672.65089MR1002581
- [30] W. L. WENDLAND, DE-HAO YU, 1988, Adaptive boundary element methods for strongly elliptic integral equations, Numer. Math., 53, pp. 539-558. Zbl0657.65138MR954769
- [31] W. L. WENDLAND, DE-HAO YU, 1992, A posteriori local error estimates ofboundary element methods with some pseudo-differential equations on closed curves, Journal for Computational Mathematics, 10, 273-289. Zbl0758.65072MR1167929
- [32] E. ZEIDLER, 1990, Nonlinear functional analysis and its applications II, Vol. A and B, Springer-Verlag, New York. Zbl0684.47029MR816732
Citations in EuDML Documents
top- Markus Aurada, Michael Feischl, Dirk Praetorius, Convergence of some adaptive FEM-BEM coupling for elliptic but possibly nonlinear interface problems
- Markus Aurada, Michael Feischl, Dirk Praetorius, Convergence of some adaptive FEM-BEM coupling for elliptic but possibly nonlinear interface problems
- Mauricio A. Barrientos, Gabriel N. Gatica, Matthias Maischak, - error estimates for linear exterior problems mixed-FEM and DtN mappings
- Mauricio A. Barrientos, Gabriel N. Gatica, Matthias Maischak, error estimates for linear exterior problems mixed-FEM and DtN mappings
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.