The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 15 of 15

Showing per page

Order by Relevance | Title | Year of publication

An overview of some recent developments on integer-valued polynomials: Answers and Questions

Jean-Luc Chabert — 2010

Actes des rencontres du CIRM

The purpose of my talk is to give an overview of some more or less recent developments on integer-valued polynomials and, doing so, to emphasize that integer-valued polynomials really occur in different areas: combinatorics, arithmetic, number theory, commutative and non-commutative algebra, topology, ultrametric analysis, and dynamics. I will show that several answers were given to open problems, and I will raise also some new questions.

The Connes-Kasparov conjecture for almost connected groups and for linear p -adic groups

Jérôme ChabertSiegfried EchterhoffRyszard Nest — 2003

Publications Mathématiques de l'IHÉS

Let G be a locally compact group with cocompact connected component. We prove that the assembly map from the topological K-theory of G to the K-theory of the reduced C-algebra of G is an isomorphism. The same is shown for the groups of -rational points of any linear algebraic group over a local field of characteristic zero.

On the ultrametric Stone-Weierstrass theorem and Mahler's expansion

Paul-Jean CahenJean-Luc Chabert — 2002

Journal de théorie des nombres de Bordeaux

We describe an ultrametric version of the Stone-Weierstrass theorem, without any assumption on the residue field. If E is a subset of a rank-one valuation domain V , we show that the ring of polynomial functions is dense in the ring of continuous functions from E to V if and only if the topological closure E ^ of E in the completion V ^ of V is compact. We then show how to expand continuous functions in sums of polynomials.

Page 1

Download Results (CSV)