The aim of this paper is to characterize the patterns of successive distances of leaves in plane trivalent trees, and give a very short characterization of their parity pattern. Besides, we count how many trees satisfy some given sequences of patterns.
On se propose de démontrer que la formule d’inversion de Lagrange est encore valide sur un anneau commutatif, même pour une série ayant quelques termes à coefficients nilpotents avant le terme de degré 1 (dont le coefficient est inversible). On n’use que de techniques algébriques.
We give a relation between the sign of the mean of an integer-valued, left bounded, random variable and the number of zeros of inside the unit disk, where is the generating function of , under some mild conditions
In 1995, F. Jaeger and M.-C. Heydemann began to work on a conjecture on binary operations which are related to homomorphisms of De Bruijn digraphs. For this, they have considered the class of digraphs such that for any integer , has exactly walks of length , where is the order of . Recently, C. Delorme has obtained some results on the original conjecture. The aim of this paper is to recall the conjecture and to report where all the authors arrived.
Download Results (CSV)