A fundamental domain for the modular group of Riemann surfaces of type .
A proper vertex coloring of a graph is acyclic if there is no bicolored cycle in . In other words, each cycle of must be colored with at least three colors. Given a list assignment , if there exists an acyclic coloring of such that for all , then we say that is acyclically -colorable. If is acyclically -colorable for any list assignment with for all , then is acyclically -choosable. In 2006, Montassier, Raspaud and Wang conjectured that every planar graph without 4-cycles...
Page 1