The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A proper vertex coloring of a graph is acyclic if there is no bicolored cycle in . In other words, each cycle of must be colored with at least three colors. Given a list assignment , if there exists an acyclic coloring of such that for all , then we say that is acyclically -colorable. If is acyclically -colorable for any list assignment with for all , then is acyclically -choosable. In 2006, Montassier, Raspaud and Wang conjectured that every planar graph without 4-cycles...
Given a graph , if we can partition the vertex set into two nonempty subsets and which satisfy and , then we say has a -partition. And we say admits an -partition if and are both forests whose maximum degree is at most and , respectively. We show that every planar graph with girth at least 5 has an -partition.
Download Results (CSV)