Bifurcations of finite difference schemes and their approximate inertial forms

Rolf Bronstering; Min Chen

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1998)

  • Volume: 32, Issue: 6, page 715-728
  • ISSN: 0764-583X

How to cite

top

Bronstering, Rolf, and Chen, Min. "Bifurcations of finite difference schemes and their approximate inertial forms." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.6 (1998): 715-728. <http://eudml.org/doc/193894>.

@article{Bronstering1998,
author = {Bronstering, Rolf, Chen, Min},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {approximate inertial form; Kuramota-Savashinsky equation; finite differences; multigrid algorithm; inertial manifolds; stability; bifurcations; convergence; reaction-diffusion equation},
language = {eng},
number = {6},
pages = {715-728},
publisher = {Dunod},
title = {Bifurcations of finite difference schemes and their approximate inertial forms},
url = {http://eudml.org/doc/193894},
volume = {32},
year = {1998},
}

TY - JOUR
AU - Bronstering, Rolf
AU - Chen, Min
TI - Bifurcations of finite difference schemes and their approximate inertial forms
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 6
SP - 715
EP - 728
LA - eng
KW - approximate inertial form; Kuramota-Savashinsky equation; finite differences; multigrid algorithm; inertial manifolds; stability; bifurcations; convergence; reaction-diffusion equation
UR - http://eudml.org/doc/193894
ER -

References

top
  1. [1] N. AUBRY, W. LIAN and E. S. TITI, Preserving symmetries in the proper orthogonal decomposition, SIAM J. Sci. Comp., 14, 483-505, 1993. Zbl0774.65084MR1204243
  2. [2] R. BRONSTERING, Some computational aspects on approximate inertial manifolds and finite differences. Discrete and Continuous Dynamical Systems, 2, 417-454, 1996. Zbl0949.65135MR1414079
  3. [3] M. CHEN, H. CHOI, T. DUBOIS, J. SHEN and R. TEMAM, The incremental unknowns-multilevel scheme for the simulation of turbulent channel flows. Proceedings of 1996 Summer Program, Center for Turbulence Research, NASA Ames/Stanford Univ., pages 291-308, 1996. 
  4. [4] M. CHEN and R. TEMAM. Incremental unknowns for solving partial differential equations. Numerische Mathematik, 59, 255-271, 1991. Zbl0712.65103MR1106383
  5. [5] M. CHEN and R. TEMAM, Nonlinear Galerkin method in the finite difference case and wavelet-like incremental-unknowns. Numerische Mathematik, 64(3), 271-294, 1993. Zbl0798.65093MR1206665
  6. [6] M. CHEN and R. TEMAM, Nonlinear Galerkin method with multilevel incremental-unknowns. In E.P. Agarwal, editor, Contributions in Numerical Mathematics, pages 151-164. WSSIAA, 1993. Zbl0834.65094MR1299757
  7. [7] E. J. DOEDEL, X. J. WANG and T. F. FAIRGRIEVE. Software for continuation and bifurcation problems in ordinary differential equations. CRPC-95-2, Center for Research on Parallel Computing, California Institute of Technology, 1995. 
  8. [8] C. FOIAS, JOLLY, KEVREKIDIS and E. S. TITI. Dissipativity of numerical schemes. Nonlinearity, pages 591-613, 1991. Zbl0734.65080MR1124326
  9. [9] C. FOIAS, O. MANLEY and R. TEMAM. Modeling of the interaction of small and large eddies in two dimensional turbulent flows. Math. Model. and Num. Anal., 22(1), 1988. Zbl0663.76054MR934703
  10. [10] C. FOIAS and E. S. TITIDetermining nodes, finite difference schemes and inertial manifolds. Nonlinearity, 4, 135-153, 1991. Zbl0714.34078MR1092888
  11. [11] G. GOLUB and C. VAN LOAN. Matrix Computations. The John Hopkins University Press, second edition, 1989. Zbl0733.65016MR1002570
  12. [12] J. HALE. Asymptotic Behavior of Dissipative Systems. AMS, 1988. Zbl0642.58013MR941371
  13. [13] J. M. HYMAN, B. NICOLAENKO and S. ZALESKIOrder and complexity in the Kuramoto-Sivashinsky model of weakly turbulent interfaces. Physica D, 23, 265-292, 1986. Zbl0621.76065MR876914
  14. [14] M. JOLLYExplicit construction of an inertial manifold for a reaction diffusion equation. J. Diff. Eq., 78, 220-261, 1989. Zbl0691.35049MR992147
  15. [15] M. S. JOLLY, I. G. KEVREKIDIS and E. S. TITI. Approximate inertial manifolds for the Kuramoto-Sivashinsky equation : Analysis and computations. Physica D, 44, 38-60, 1990. Zbl0704.58030MR1069671
  16. [16] M. S. JOLLY, I. G. KEVREKIDIS and E. S. TITI. Preserving dissipation in approximate inertial forms for the Kuramoto-Sivashinsky equation. J. Dyn. Diff. Eq., 3, 179-197, 1991. Zbl0738.35024MR1109435
  17. [17] D. A. JONES, L. G. MARGOLIN and E. S. TITI. On the effectiveness of the approximate inertial manifold-a computational study, to appear in Theoretical and Computational Fluid Dynamics, 1995. Zbl0838.76066
  18. [18] D. A. JONES, L. G. MARGOLIN and A. C. POJE. Enslaved finite difference schemes for nonlinear dissipative pdes. Num. Meth. for PDEs, page to appear. Zbl0879.65063MR1363860
  19. [19] KEVREKIDIS, NICOLAENKO and SCOVEL. Back in the saddle again : A computer assisted study of the Kuramoto-Sivashinsky equation. Siam J. Apl. Math., 50, 760-790, 1990. Zbl0722.35011MR1050912
  20. [20] E. KORONTINIS and M. R. TRUMMER. A finite difference scheme for Computing inertial manifolds. Z angew Math. Phys., 46, 419-444, 1995. Zbl0824.65125MR1335911
  21. [21] L. G. MARGOLIN and D. A. JONES. An approximate inertial manifold for computing Burger's equation. Physica D, 60, 175-184, 1992. Zbl0789.65069MR1195598
  22. [22] M. MARION, Approximate inertial manifolds for reaction-diffusion equations in high space dimension. J. Dyn. Diff. Eq., 1, 245-267, 1989. Zbl0702.35127MR1010967
  23. [23] M. MARION and R. TEMAM. Nonlinear Galerkin methods. SIAM J. Num. An., 26, 1139-1157, 1989. Zbl0683.65083MR1014878
  24. [24] B. NICOLAENKO, B. SCHEURER and R. TEMAM. Some global dynamical properties of the Kuramoto-Sivashinsky equation : Nonlinear stability and attractors. Physica D, 16, 155-183, 1985. Zbl0592.35013MR796268
  25. [25] R. TEMAM. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer Verlag, 1988. Zbl0662.35001MR953967
  26. [26] R. WALLACE and D. M. SLOAN. Numerical solution of a nonlinear dissipative System using a pseudospectral method and inertial manifolds. Siam J. Sci. Comput., 16, 1049-1070, 1994. Zbl0833.65087MR1346292

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.