The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

The Lehmer constants of an annulus

Artūras DubickasChris J. Smyth — 2001

Journal de théorie des nombres de Bordeaux

Let M ( α ) be the Mahler measure of an algebraic number α , and V be an open subset of . Then its L ( V ) is inf M ( α ) 1 / deg ( α ) , the infimum being over all non-zero non-cyclotomic α lying with its conjugates outside V . We evaluate L ( V ) when V is any annulus centered at 0 . We do the same for a variant of L ( V ) , which we call the transfinite Lehmer constant L ( V ) .Also, we prove the converse to Langevin’s Theorem, which states that L ( V ) > 1 if V contains a point of modulus 1 . We prove the corresponding result for L ( V ) .

Page 1

Download Results (CSV)