The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 17 of 17

Showing per page

Order by Relevance | Title | Year of publication

On the norm-closure of the class of hypercyclic operators

Christoph Schmoeger — 1997

Annales Polonici Mathematici

Let T be a bounded linear operator acting on a complex, separable, infinite-dimensional Hilbert space and let f: D → ℂ be an analytic function defined on an open set D ⊆ ℂ which contains the spectrum of T. If T is the limit of hypercyclic operators and if f is nonconstant on every connected component of D, then f(T) is the limit of hypercyclic operators if and only if f ( σ W ( T ) ) z : | z | = 1 is connected, where σ W ( T ) denotes the Weyl spectrum of T.

The stability radius of an operator of Saphar type

Christoph Schmoeger — 1995

Studia Mathematica

A bounded linear operator T on a complex Banach space X is called an operator of Saphar type if its kernel is contained in its generalized range n = 1 T n ( X ) and T is relatively regular. For T of Saphar type we determine the supremum of all positive numbers δ such that T - λI is of Saphar type for |λ| < δ.

On a theorem of Vesentini

Gerd HerzogChristoph Schmoeger — 2004

Studia Mathematica

Let 𝒜 be a Banach algebra over ℂ with unit 1 and 𝑓: ℂ → ℂ an entire function. Let 𝐟: 𝒜 → 𝒜 be defined by 𝐟(a) = 𝑓(a) (a ∈ 𝒜), where 𝑓(a) is given by the usual analytic calculus. The connections between the periods of 𝑓 and the periods of 𝐟 are settled by a theorem of E. Vesentini. We give a new proof of this theorem and investigate further properties of periods of 𝐟, for example in C*-algebras.

Page 1

Download Results (CSV)