The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

On the asymptotic properties of a simple estimate of the Mode

Christophe AbrahamGérard BiauBenoît Cadre — 2004

ESAIM: Probability and Statistics

We consider an estimate of the mode θ of a multivariate probability density f with support in d using a kernel estimate f n drawn from a sample X 1 , , X n . The estimate θ n is defined as any x in { X 1 , , X n } such that f n ( x ) = max i = 1 , , n f n ( X i ) . It is shown that θ n behaves asymptotically as any maximizer θ ^ n of f n . More precisely, we prove that for any sequence ( r n ) n 1 of positive real numbers such that r n and r n d log n / n 0 , one has r n θ n - θ ^ n 0 in probability. The asymptotic normality of θ n follows without further work.

On the asymptotic properties of a simple estimate of the Mode

Christophe AbrahamGérard BiauBenoît Cadre — 2010

ESAIM: Probability and Statistics

We consider an estimate of the mode of a multivariate probability density with support in d using a kernel estimate drawn from a sample . The estimate is defined as any in {} such that f n ( x ) = max i = 1 , , n f n ( X i ) . It is shown that behaves asymptotically as any maximizer θ ^ n of . More precisely, we prove that for any sequence ( r n ) n 1 of positive real numbers such that r n and r n d log n / n 0 , one has r n θ n - θ ^ n 0 in probability. The asymptotic normality of follows without further work.

Page 1

Download Results (CSV)