In this article we implement different numerical schemes to simulate the Schrödinger-Debye equations that occur in nonlinear optics. Since the existence of blow-up solutions is an open problem, we try to compute such solutions. The convergence of the methods is proved and simulations seem indeed to show that for at least small delays self-focusing solutions may exist.
In this article we implement different numerical schemes to simulate the
Schrödinger-Debye equations that occur in nonlinear optics. Since the
existence of blow-up solutions is an open problem, we try to compute such
solutions. The convergence of the methods is proved and simulations seem
indeed to show that for at least small delays self-focusing solutions may
exist.
We deal with numerical analysis and simulations of the Davey-Stewartson equations which model, for example, the evolution of water surface waves. This time dependent PDE system is particularly interesting as a generalization of the 1-d integrable NLS to 2 space dimensions. We use a time splitting spectral method where we give a convergence analysis for the semi-discrete version of the scheme. Numerical results are presented for various blow-up phenomena of the equation, including blowup of defocusing,...
The modelling and the numerical resolution of the electrical charging of a
spacecraft in interaction with the Earth magnetosphere is considered. It involves the Vlasov-Poisson system, endowed with non standard boundary conditions.
We discuss the pros and cons of several numerical methods for solving this system, using as benchmark a simple 1D model which exhibits the main difficulties of the original models.
We deal with numerical analysis and simulations of the Davey-Stewartson equations
which model, for example, the evolution of water surface waves.
This time dependent PDE system is particularly interesting as a generalization
of the 1-d integrable NLS to 2 space dimensions.
We use a time splitting spectral method where
we give a convergence analysis for the semi-discrete version of the scheme.
Numerical results are presented for various blow-up phenomena of
the equation, including blowup of defocusing,...
This article presents the derivation of a semi-classical model of electromagnetic-wave propagation in a non centro-symmetric crystal. It consists of Maxwell’s equations for the wave field coupled with a version of Bloch’s equations which takes fully into account the discrete symmetry group of the crystal. The model is specialized in the case of a KDP crystal for which information about the dipolar moments at the Bloch level can be recovered from the macroscopic dispersion properties of the material....
This article presents the derivation of a semi-classical model of electromagnetic-wave propagation in a non centro-symmetric crystal. It consists of Maxwell's equations for the wave field coupled with a version of Bloch's equations which takes fully into account the discrete symmetry group of the crystal. The model is specialized in the case of a KDP crystal for which information about the dipolar moments at the Bloch level can be recovered from the macroscopic dispersion properties of the material.
...
In this work, we consider the computation of the boundary conditions for the linearized
Euler–Poisson derived from the BGK kinetic model in the small mean free path regime.
Boundary layers are generated from the fact that the incoming kinetic flux might be far
from the thermodynamical equilibrium. In [2], the authors propose a method to compute
numerically the boundary conditions in the hydrodynamic limit relying on an analysis of
the boundary layers....
Download Results (CSV)