The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Schatten class generalized Toeplitz operators on the Bergman space

Chunxu XuTao Yu — 2021

Czechoslovak Mathematical Journal

Let μ be a finite positive measure on the unit disk and let j 1 be an integer. D. Suárez (2015) gave some conditions for a generalized Toeplitz operator T μ ( j ) to be bounded or compact. We first give a necessary and sufficient condition for T μ ( j ) to be in the Schatten p -class for 1 p < on the Bergman space A 2 , and then give a sufficient condition for T μ ( j ) to be in the Schatten p -class ( 0 < p < 1 ) on A 2 . We also discuss the generalized Toeplitz operators with general bounded symbols. If ϕ L ( D , d A ) and 1 < p < , we define the generalized Toeplitz...

The generalized Toeplitz operators on the Fock space F α 2

Chunxu XuTao Yu — 2024

Czechoslovak Mathematical Journal

Let μ be a positive Borel measure on the complex plane n and let j = ( j 1 , , j n ) with j i . We study the generalized Toeplitz operators T μ ( j ) on the Fock space F α 2 . We prove that T μ ( j ) is bounded (or compact) on F α 2 if and only if μ is a Fock-Carleson measure (or vanishing Fock-Carleson measure). Furthermore, we give a necessary and sufficient condition for T μ ( j ) to be in the Schatten p -class for 1 p < .

Page 1

Download Results (CSV)