Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

On the Picard number of divisors in Fano manifolds

Cinzia Casagrande — 2012

Annales scientifiques de l'École Normale Supérieure

Let  X be a complex Fano manifold of arbitrary dimension, and D a prime divisor in  X . We consider the image 𝒩 1 ( D , X ) of  𝒩 1 ( D ) in  𝒩 1 ( X ) under the natural push-forward of 1 -cycles. We show that ρ X - ρ D codim 𝒩 1 ( D , X ) 8 . Moreover if codim 𝒩 1 ( D , X ) 3 , then either X S × T where S is a Del Pezzo surface, or codim 𝒩 1 ( D , X ) = 3 and X has a fibration in Del Pezzo surfaces onto a Fano manifold T such that ρ X - ρ T = 4 .

On some numerical properties of Fano varieties

Cinzia Casagrande — 2004

Bollettino dell'Unione Matematica Italiana

This is the text of a talk given at the XVII Convegno dell’Unione Matematica Italiana held at Milano, September 8-13, 2003. I would like to thank Angelo Lopez and Ciro Ciliberto for the kind invitation to the conference. I survey some numerical conjectures and theorems concerning relations between the index, the pseudo-index and the Picard number of a Fano variety. The results I refer to are contained in the paper [3], wrote in collaboration with Bonavero, Debarre and Druel.

The number of vertices of a Fano polytope

Cinzia Casagrande — 2006

Annales de l’institut Fourier

Let X be a Gorenstein, -factorial, toric Fano variety. We prove two conjectures on the maximal Picard number of X in terms of its dimension and its pseudo-index, and characterize the boundary cases. Equivalently, we determine the maximal number of vertices of a simplicial reflexive polytope.

On covering and quasi-unsplit families of curves

Laurent BonaveroCinzia CasagrandeStéphane Druel — 2007

Journal of the European Mathematical Society

Given a covering family V of effective 1-cycles on a complex projective variety X , we find conditions allowing one to construct a geometric quotient q : X Y , with q regular on the whole of X , such that every fiber of q is an equivalence class for the equivalence relation naturally defined by V . Among other results, we show that on a normal and -factorial projective variety X with canonical singularities and dim X 4 , every covering and quasi-unsplit family V of rational curves generates a geometric extremal...

Page 1

Download Results (CSV)