The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Pour un feuilletage à fibré trivialisé, on définit une “algèbre de classes caractéristiques” ; cette algèbre contient les classes caractéristiques habituelles du feuilletage. On montre qu’elle provient d’une algèbre caractéristique universelle.
Abordant une étude homologique des variétés feuilletées, on considère ici un type de feuilletages dont le comportement est voisin de celui des fibrations.
Cette situation conduit à une généralisation de la notion de fibré au sens de Serre. Elle peut être exploitée dans le cadre semi-simplicial de Kan.
Une interprétation convenable des différents termes homologiques permet alors de donner des propriétés géométriques de ces feuilletages.
Download Results (CSV)