The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Comportement à l'infini des solutions des équations de Navier-Stokes et propriété des ensembles fonctionnels invariants (ou attracteurs)

Colette Guillopé — 1982

Annales de l'institut Fourier

Les données, i.e. l’ouvert Ω et la force appliquée f , sont supposées de classe 𝒞 . Il est montré que toute solution des équations de Navier-Stokes dans l’ouvert Ω , bornée dans H 1 ( Ω ) N ( N = 2 ou 3 ) sur un intervalle de temps semi-infini ( t 0 + ) , est aussi bornée, pour t + , dans tous les espaces H m ( Ω ) N . Il en résulte que tout ensemble fonctionnel invariant ou attracteur borné dans H 1 ( Ω ) ( N (ou même H 1 / 2 + ϵ ( Ω ) N , ϵ > 0 ) est porté par 𝒞 ( Ω ) . Le cas où les forces appliquées dérivent d’un potentiel (i.e. f = 0 ) est abordé : il est montré que toute solution...

Page 1

Download Results (CSV)