The optimization of the stationary heat equation with a variable right-hand side
Solving the stationary heat equation we optimize the temperature on part of the boundary of the domain under investigation. First the Poisson equation is solved; both the Neumann condition on part of the boundary and the Newton condition on the rest are prescribed, the distribution of the heat sources being variable. In the second case, the heat equation also contains a convective term, the distribution of heat sources is specified and the Neumann condition is variable on part of the boundary.