The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Decompositions of cyclic elements of locally connected continua

D. Daniel — 2010

Colloquium Mathematicae

Let X denote a locally connected continuum such that cyclic elements have metrizable G δ boundary in X. We study the cyclic elements of X by demonstrating that each such continuum gives rise to an upper semicontinuous decomposition G of X into continua such that X/G is the continuous image of an arc and the cyclic elements of X correspond to the cyclic elements of X/G that are Peano continua.

The Schreier Property and Gauss' Lemma

Daniel D. AndersonMuhammad Zafrullah — 2007

Bollettino dell'Unione Matematica Italiana

Let D be an integral domain with quotient field D . Recall that D is Schreier if D is integrally closed and for all x , y , z D { 0 } , x | y z implies that x = r s where r | y e s | z . A GCD domain is Schreier. We show that an integral domain D is a GCD domain if and only if (i) for each pair a , b D { 0 } , there is a finitely generated ideal B such that a D b D = B v and (ii) every quadratic in D [ X ] that is a product of two linear polynomials in K [ X ] is a product of two linear polynomials in D [ X ] . We also show that D is Schreier if and only if every polynomial...

Computable categoricity versus relative computable categoricity

Rodney G. DowneyAsher M. KachSteffen LemppDaniel D. Turetsky — 2013

Fundamenta Mathematicae

We study the notion of computable categoricity of computable structures, comparing it especially to the notion of relative computable categoricity and its relativizations. We show that every 1 decidable computably categorical structure is relatively Δ⁰₂ categorical. We study the complexity of various index sets associated with computable categoricity and relative computable categoricity. We also introduce and study a variation of relative computable categoricity, comparing it to both computable...

Page 1

Download Results (CSV)