Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Decompositions of cyclic elements of locally connected continua

D. Daniel — 2010

Colloquium Mathematicae

Let X denote a locally connected continuum such that cyclic elements have metrizable G δ boundary in X. We study the cyclic elements of X by demonstrating that each such continuum gives rise to an upper semicontinuous decomposition G of X into continua such that X/G is the continuous image of an arc and the cyclic elements of X correspond to the cyclic elements of X/G that are Peano continua.

The Schreier Property and Gauss' Lemma

Daniel D. AndersonMuhammad Zafrullah — 2007

Bollettino dell'Unione Matematica Italiana

Let D be an integral domain with quotient field D . Recall that D is Schreier if D is integrally closed and for all x , y , z D { 0 } , x | y z implies that x = r s where r | y e s | z . A GCD domain is Schreier. We show that an integral domain D is a GCD domain if and only if (i) for each pair a , b D { 0 } , there is a finitely generated ideal B such that a D b D = B v and (ii) every quadratic in D [ X ] that is a product of two linear polynomials in K [ X ] is a product of two linear polynomials in D [ X ] . We also show that D is Schreier if and only if every polynomial...

Computable categoricity versus relative computable categoricity

Rodney G. DowneyAsher M. KachSteffen LemppDaniel D. Turetsky — 2013

Fundamenta Mathematicae

We study the notion of computable categoricity of computable structures, comparing it especially to the notion of relative computable categoricity and its relativizations. We show that every 1 decidable computably categorical structure is relatively Δ⁰₂ categorical. We study the complexity of various index sets associated with computable categoricity and relative computable categoricity. We also introduce and study a variation of relative computable categoricity, comparing it to both computable...

Page 1

Download Results (CSV)