We give a necessary and sufficient condition for the existence of an exponential attractor. The condition is formulated in the context of metric spaces. It also captures the quantitative properties of the attractor, i.e., the dimension and the rate of attraction. As an application, we show that the evolution operator for the wave equation with nonlinear damping has an exponential attractor.
We consider a system of ordinary differential equations with infinite delay. We study large time dynamics in the phase space of functions with an exponentially decaying weight. The existence of an exponential attractor is proved under the abstract assumption that the right-hand side is Lipschitz continuous. The dimension of the attractor is explicitly estimated.
We are concerned with the uniqueness problem for solutions to the second order ODE of the form , subject to appropriate initial conditions, under the sole assumption that is non-decreasing with respect to , for each fixed. We show that there is non-uniqueness in general; on the other hand, several types of reasonable additional assumptions make the problem uniquely solvable. The interest in this problem comes, among other, from the study of oscillations of lumped parameter systems with implicit...
We consider the so-called Ladyzhenskaya model of incompressible fluid, with an additional artificial smoothing term ɛΔ3. We establish the global existence, uniqueness, and regularity of solutions. Finally, we show that there exists an exponential attractor, whose dimension we estimate in terms of the relevant physical quantities, independently of ɛ > 0.
A generalized concept of sign is introduced in the context of Colombeau algebras. It extends the sign of the point-value in the case of sufficiently regular functions. This concept of generalized sign is then used to characterize the entropy condition for discontinuous solutions of scalar conservation laws.
The classical framework for studying the equations governing the motion of lumped parameter systems presumes one can provide expressions for the forces in terms of kinematical quantities for the individual constituents. This is not possible for a very large class of problems where one can only provide implicit relations between the forces and the kinematical quantities. In certain special cases, one can provide non-invertible expressions for a kinematical quantity in terms of the force, which then...
We study the vibrations of lumped parameter systems, the spring being defined by the classical linear constitutive relationship between the spring force and the elongation while the dashpot is described by a general implicit relationship between the damping force and the velocity. We prove global existence of solutions for the governing equations, and discuss conditions that the implicit relation satisfies that are sufficient for the uniqueness of solutions. We also present some counterexamples...
Download Results (CSV)