Invariants l2 de relations d’équivalence et de groupes
Un système fini d’isométries partielles de est dit à générateurs indépendants si les composés non triviaux fixent au plus un point. On décrit un procédé simple et naturel pour obtenir des générateurs indépendants, sans modifier les orbites, pour tout système sans composante minimale homogène : en prenant la restriction de chaque générateur à un certain sous-intervalle de son domaine. Un système avec une composante minimale homogène ne possède pas de générateurs indépendants.
Page 1