The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

On split-by-nilpotent extensions

Ibrahim AssemDan Zacharia — 2003

Colloquium Mathematicae

Let A and R be two artin algebras such that R is a split extension of A by a nilpotent ideal. We prove that if R is quasi-tilted, or tame and tilted, then so is A. Moreover, generalizations of these properties, such as laura and shod, are also inherited. We also study the relationship between the tilting R-modules and the tilting A-modules.

Finiteness of the strong global dimension of radical square zero algebras

Otto KernerAndrzej SkowrońskiKunio YamagataDan Zacharia — 2004

Open Mathematics

The strong global dimension of a finite dimensional algebra A is the maximum of the width of indecomposable bounded differential complexes of finite dimensional projective A-modules. We prove that the strong global dimension of a finite dimensional radical square zero algebra A over an algebraically closed field is finite if and only if A is piecewise hereditary. Moreover, we discuss results concerning the finiteness of the strong global dimension of algebras and the related problem on the density...

Page 1

Download Results (CSV)