Existence of a solution for a nonlinearly elastic plane membrane “under tension”
A justification of the two-dimensional nonlinear “membrane” equations for a plate made of a Saint Venant-Kirchhoff material has been given by Fox [9] by means of the method of formal asymptotic expansions applied to the three-dimensional equations of nonlinear elasticity. This model, which retains the material-frame indifference of the original three dimensional problem in the sense that its energy density is invariant under the rotations of , is equivalent to finding the critical points of...
Les équations bidimensionnelles d'une coque non linéairement élastique «en flexion» ont été récemment justifiées par V. Lods et B. Miara par la méthode des développements asymptotiques formels appliquée aux équations de l'élasticité non linéaire tridimensionnelle. Ces équations se mettent sous la forme d'un problème de point critique d'une fonctionnelle dont l'intégrande est une expression quadratique en termes de la différence exacte entre les tenseurs de courbure des surfaces déformée et non déformée,...
Page 1