Inégalités à poids pour le projecteur de Bergman dans la boule unité de
Nous répondons à une conjecture de R. Coifman et R. Rochberg : dans le complexifié du cône sphérique de , le dual de la classe de Bergman s’obtient comme projection de Bergman de et coïncide avec la classe de Bloch des fonctions holomorphes. Nous examinons également le cas d’un produit de domaines.
On the Lie ball w of C, n ≥ 3, we prove that for all p ∈ [1,∞), p ≠ 2, the Hardy space H(w) is an uncomplemented subspace of the Lebesgue space L(∂w, dσ), where ∂w denotes the Shilov boundary of w and dσ is a normalized invariant measure of ∂w.
On homogeneous Siegel domains of type II, we prove that under certain conditions, the subspace of a weighted -space (0 < p < ∞) consisting of holomorphic functions is reproduced by a weighted Bergman kernel. We also obtain some -estimates for weighted Bergman projections. The proofs rely on a generalization of the Plancherel-Gindikin formula for the Bergman space .
The aim of this work is to establish several results on the existence and regularity of solutions for some nondensely nonautonomous partial functional differential equations with finite delay in a Banach space. We assume that the linear part is not necessarily densely defined and generates an evolution family under the conditions introduced by N. Tanaka.We show the local existence of the mild solutions which may blow up at the finite time. Secondly,we give sufficient conditions ensuring the existence...
Page 1